博客
关于我
python入门教程 - 滑块实战[附源码]
阅读量:743 次
发布时间:2019-03-22

本文共 5981 字,大约阅读时间需要 19 分钟。

环境安装

安装python需要的依赖包
cv2 安装可以参考这里:
安装webdriver -> chrome
下载对应版本,放在本地 D:\anaconda3\Scripts 目录下

效果展示

GIF效果:
cv2使用参考:
注意:测试时慢点刷,容易封IP。

源码

有问题可以留言探讨,公众号:JavaPub
对源码加了大量注释
测试网站:

import os
import cv2
import time
import random
import requests
import numpy as np
from PIL import Image
from io import BytesIO
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver import ActionChains
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
class CrackSlider():
def __init__(self):
self.browser = webdriver.Chrome()
self.s2 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[1]'
self.s3 = r'//*[@id="captcha_div"]/div/div[1]/div/div[1]/img[2]'
self.url = 'http://app.miit-eidc.org.cn/miitxxgk/gonggao/xxgk/queryCpParamPage?dataTag=Z&gid=U3119671&pc=303'
self.wait = WebDriverWait(self.browser, 20)
self.browser.get(self.url)
def get_img(self, target, template, xp):
time.sleep(3)
target_link = self.browser.find_element_by_xpath(self.s2).get_attribute("src")
template_link = self.browser.find_element_by_xpath(self.s3).get_attribute("src")
target_img = Image.open(BytesIO(requests.get(target_link).content))
template_img = Image.open(BytesIO(requests.get(template_link).content))
target_img.save(target)
template_img.save(template)
size_loc = target_img.size
print('size_loc[0]-----\n')
print(size_loc[0])
zoom = xp / int(size_loc[0])
print('zoom-----\n')
print(zoom)
return zoom
def change_size(self, file):
image = cv2.imread(file, 1)
img = cv2.medianBlur(image, 5)
b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY)
binary_image = b[1]
binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
x, y = binary_image.shape
edges_x = []
edges_y = []
for i in range(x):
for j in range(y):
if binary_image[i][j] == 255:
edges_x.append(i)
edges_y.append(j)
left = min(edges_x)
right = max(edges_x)
width = right - left
bottom = min(edges_y)
top = max(edges_y)
height = top - bottom
pre1_picture = image[left:left + width, bottom:bottom + height]
return pre1_picture
def match(self, target, template):
img_gray = cv2.imread(target, 0)
img_rgb = self.change_size(template)
template = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
run = 1
L = 0
R = 1
while run < 20:
run += 1
threshold = (R + L) / 2
if threshold < 0:
print('Error')
return None
loc = np.where(res >= threshold)
if len(loc[1]) > 1:
L += (R - L) / 2
elif len(loc[1]) == 1:
break
elif len(loc[1]) < 1:
R -= (R - L) / 2
res = loc[1][0]
print('match distance-----\n')
print(res)
return res
def move_to_gap(self, tracks):
slider = self.wait.until(EC.element_to_be_clickable((By.CLASS_NAME, 'yidun_slider')))
ActionChains(self.browser).click_and_hold(slider).perform()
while tracks:
x = tracks.pop(0)
ActionChains(self.browser).move_by_offset(xoffset=x, yoffset=0).perform()
time.sleep(0.05)
ActionChains(self.browser).release().perform()
def move_to_gap1(self, distance):
distance += 46
time.sleep(1)
element = self.browser.find_element_by_xpath(self.s3)
ActionChains(self.browser).click_and_hold(on_element=element).perform()
ActionChains(self.browser).move_to_element_with_offset(to_element=element, xoffset=distance, yoffset=0).perform()
time.sleep(1.38)
ActionChains(self.browser).release(on_element=element).perform()
def move_to_gap2(self, distance):
element = self.browser.find_elements_by_class_name("yidun_slider")[0]
action = ActionChains(self.browser)
mouse_action = action.click_and_hold(on_element=element)
distance += 11
distance = int(distance * 32/33)
move_steps = int(distance/4)
for i in range(0,move_steps):
mouse_action.move_by_offset(4,random.randint(-5,5)).perform()
time.sleep(0.1)
mouse_action.release().perform()
def get_tracks(self, distance, seconds, ease_func):
distance += 20
tracks = [0]
offsets = [0]
for t in np.arange(0.0, seconds, 0.1):
ease = ease_func
offset = round(ease(t / seconds) * distance)
tracks.append(offset - offsets[-1])
offsets.append(offset)
tracks.extend([-3, -2, -3, -2, -2, -2, -2, -1, -0, -1, -1, -1])
return tracks
def get_tracks1(self, distance):
"""根据偏移量获取移动轨迹
:param distance: 偏移量
:return: 移动轨迹
"""
track = []
current = 0
mid = distance * 4 / 5
t = 0.2
v = 0
while current < distance:
if current < mid:
a = 4
else:
a = -3
v0 = v
v = v0 + a * t
move = v0 * t + 1 / 2 * a * t * t
current += move
track.append(round(move))
return track
def ease_out_quart(self, x):
res = 1 - pow(1 - x, 4)
return res
if __name__ == '__main__':
xp = 320
target = 'target.jpg'
template = 'template.png'
cs = CrackSlider()
zoom = cs.get_img(target, template, xp)
distance = cs.match(target, template)
track = cs.get_tracks((distance + 7) * zoom, random.randint(2, 4), cs.ease_out_quart)
cs.move_to_gap(track)

转载地址:http://qyfwk.baihongyu.com/

你可能感兴趣的文章
Objective-C实现hamiltonianCycle哈密尔顿图算法(附完整源码)
查看>>
Objective-C实现hamming code汉明码算法(附完整源码)
查看>>
Objective-C实现hamming numbers汉明数算法(附完整源码)
查看>>
Objective-C实现hammingDistance汉明距离算法(附完整源码)
查看>>
Objective-C实现hanning 窗(附完整源码)
查看>>
Objective-C实现hanoiTower汉诺塔算法(附完整源码)
查看>>
Objective-C实现hardy ramanujana定理算法(附完整源码)
查看>>
Objective-C实现harmonic series调和级数算法(附完整源码)
查看>>
Objective-C实现harris算法(附完整源码)
查看>>
Objective-C实现HashTable哈希表算法(附完整源码)
查看>>
Objective-C实现haversine distance斜距算法(附完整源码)
查看>>
Objective-C实现heap sort堆排序算法(附完整源码)
查看>>
Objective-C实现heaps algorithm堆算法(附完整源码)
查看>>
Objective-C实现heap堆算法(附完整源码)
查看>>
Objective-C实现Heap堆算法(附完整源码)
查看>>
Objective-C实现hexagonal numbers六边形数算法(附完整源码)
查看>>
Objective-C实现hidden layers neural network浅层神经网络算法(附完整源码)
查看>>
Objective-C实现highest response ratio next高响应比优先调度算法(附完整源码)
查看>>
Objective-C实现hill climbing爬山法用来寻找函数的最大值算法(附完整源码)
查看>>
Objective-C实现Hill密码加解密算法(附完整源码)
查看>>